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Abstract We extend a result of Dubins (Ann Probab 3:89–99, 1975) from bounded
to unbounded random variables. Dubins showed that a finitely additive expectation
over the collection of bounded random variables can be written as an integral of
conditional expectations (disintegrability) if and only if the marginal expectation is
always within the smallest closed interval containing the conditional expectations
(conglomerability). We give a sufficient condition to extend this result to collections
of random variables that have finite expected value and whose conditional expectations
are finite and have finite expected value.
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1 Introduction

In discussions of the foundations of probability, a longstanding topic of debate is
whether to require, beyond being finitely additive, that probabilities are countably
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additive. Specifically, we take the following three axioms to constitute the theory of
finitely additive probability. Let {Ω,B} be a measurable space. For all A, B ∈ B,

Axiom 1: 0 ≤ P(A) ≤ 1.
Axiom 2: P(Ω) = 1.
Axiom 3: If A ∩ B = ∅, then P(A) + P(B) = P(A ∪ B).

Countable additivity, which is taken by Kolmogorov (1956, p. 15) as an “expedient”,
requires the following. Let {Ai }∞i=1 be elements of B.

Axiom 4: If Ai ∩ A j = ∅ for all i �= j , then P
(∪∞

i=1 Ai
) = ∑∞

i=1 P(Ai ).

Call a probability merely finitely additive if it satisfies the first three axioms but fails
the fourth one. In this paper, we assume only the first three axioms.

One major distinction between merely finitely additive probabilities and countably
additive probabilities involves the theory of conditional probability. We take it as
non-controversial that conditional probability satisfies the following product rule:

P(A ∩ B) = P(B|A)P(A). (1)

Furthermore, when the conditioning event has positive probability, P(A) > 0, we
can use (1) to fix conditional probability by unconditional probability: P(B|A) =
P(A ∩ B)/P(A).

However, when the conditioning event is null, P(A) = 0, the countably additive
theory denies that conditional probability is defined given such an event A . Rather, the
countably additive theory defines conditional probability through the Radon-Nikodym
theorem as a solution to an integral equation with respect to a sub-σ -field.

Definition 1 Let A be a sub-σ -field of B. Then P(·|A)(·) is a regular conditional
probability on B, given A if

1. For each ω ∈ Ω , P(·|A)(ω) is a probability on B,
2. for each B ∈ B, P(B|A)(·) is an A-measurable function, and
3. for each A ∈ A, P(A ∩ B) = ∫

A P(B|A)(ω)d P(ω).

That is, P(B|A)(·) is a version of the Radon-Nikodym derivative of P(· ∩ B) with
respect to P defined on the sub-σ -field A.

Kolmogorov (1956, [Section 5.2]) points out that regular conditional probabilities
admit the so-called “Borel Paradox”. To summarize the paradox, let A and A′ be
the σ -fields generated by two different random variables X and X ′ respectively. The
paradox finds an event C ∈ B, a value x of X , and a value x ′ of X ′ such that the two
events {X = x} and {X ′ = x ′} are identical, but P(C |X = x) �= P(C |X ′ = x ′). That
is, with B = {X = x} = {X ′ = x ′}, we find that P(C |B) depends on which σ -field
we choose for conditioning. It is well-known that, for a specific pair X and X ′, the sets
of all x and x ′ values that lead to this paradox form sets of probability 0. However,
Kadane et al. (1986) illustrates how one can make the paradox occur with positive
probability by considering more than countably many random variables at a time.
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In contrast to the countably additive theory, (see Krauss 1968; Dubins 1975) finitely
additive conditional probabilities can be fully defined given each non-empty subset of
Ω , while satisfying the following generalization of the product rule:

For all A, B, and C such that B ∩ C �= ∅, P(A ∩ C |B) = P(C |B)P(A|B ∩ C).

However, the cost for these finitely additive conditional probabilities includes the
penalty that they may fail to satisfy the integral property of regular conditional proba-
bilities (clause 3 in Definition 1). In particular, there can exist a denumerable partition
π = {Ai }∞i=1 and an event B such that

P(B) �=
∞∑

i=1

P(B|Ai )P(Ai ). (2)

If (2) holds, we say that P fails to be disintegrable in the partition π . (See Definition 9
below for a precise definition.) Here is an elementary illustration, due to Dubins (1975)
and discussed further by Kadane et al. (1996).

Example 1 Let Ω = {0, 1} × {1, 2, . . .}. Let P be a finitely additive probability that
satisfies the following:

– P((1, i)) = 2−i−1 for i = 1, 2, . . .,
– P(B) = 1/2, where B = {(0, 1), (0, 2), . . .},
– P((0, i)) = 0 for i = 1, 2, . . ..

Define the partition π = {Ai }∞i=1, where Ai = {(0, i), (1, i)}. Since P(Ai ) = 2−i−1 >

0 for all i , we have

P(B|Ai ) = P(B ∩ Ai )

P(Ai )
= 0,

for all i . Hence
∑∞

i=1 P(B|Ai )P(Ai ) = 0 �= P(B).

The concept of disintegrability is relevant to understanding some otherwise anom-
alous features of Bayesian statistical inference that arise when using so-called improper
priors. These are instances of the so-called marginalization paradoxes of Dawid et al.
(1973). As Kadane et al. (1996, [Section 5]) explains, an improper prior, e.g. Lebesgue
measure over the whole real line, corresponds to a merely finitely additive prior prob-
ability on the real line. Each unit interval has equal probability, i.e. probability 0. Even
when the formal posterior computed from the improper prior turns out to be countably
additive, the joint (finitely additive) probability may fail to be disintegrable in the
partition determined by the data.

In Example 1, we also see that the conditional probabilities P(B|Ai ) have the
property that

there exists ε > 0 such that P(B) > P(B|Ai ) + ε for every i. (3)
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De Finetti (1930) says that such a probability fails conglomerability in the partition.
(See Definition 9 for a more precise definition.) Schervish et al. (1984) show that
each merely finitely additive probability fails conglomerability in some denumerable
partition, which is not possible for countably additive probabilities. As we saw above,
for nondenumerable partitions, the countably additive theory imposes disintegrability
on the definition of conditional probability. Consequently the theory is not able to
define P(A|B) for arbitrary sets A and B, as we saw in the Borel Paradox.

Dubins (1975) established an important equivalence between conglomerability and
disintegrability of finitely additive expectations, which de Finetti (1974) calls (coher-
ent) previsions (see Definition 2 below). Dubins showed that, with respect to the
collection of bounded random variables, by replacing countably additive probability
and conditional probability with the more general concepts of (finitely additive) expec-
tations and conditional expectations, then a finitely additive expectation function is
disintegrable in a partition if and only if its conditional expectations are conglomerable
in that partition. It follows easily from (3) that, when a finitely additive expectation fails
conglomerability in a partition π , then it fails to be disintegrable in π . The converse
inference is the heart of Dubins’ result.

In this paper we extend Dubins’ result to particular collections of unbounded ran-
dom variables. In Sect. 2 we review de Finetti’s concept of coherent previsions and
conditional previsions, and describe a theory of finitely additive integrals/expectations
for unbounded random variables. In Sect. 3 we review Dubins’ result and discuss how
to extend conglomerability to unbounded random variables. In Sect. 4 we give con-
ditions under which the equivalence between disintegrability and conglomerability
extends to unbounded random variables. In particular, we restrict attention to random
variables for which previsions and conditional previsions are finite. Example 5 illus-
trates how the equivalence can fail if our conditions are not met. We offer a concluding
discussion in Sect. 6.

2 Background

Let Ω be a fixed non-empty set, and define a random variable to be a real-valued
function X defined on Ω . We require that X (ω) be finite for all ω ∈ Ω , but not neces-
sarily bounded. All of the collections of random variables discussed in the definitions
and results of this paper are allowed to include unbounded random variables unless
explicitly stated otherwise.

The concept of coherent prevision on a collection of random variables was intro-
duced by de Finetti (1974).

Definition 2 Let U be a collection of random variables defined on Ω . A function
P : U → R is called a prevision. We say that P is incoherent if there exists a finite
subset {X1, . . . , Xn} of U and scalars α1, . . . , αn and ε > 0 such that, for all ω ∈ Ω ,

n∑

i=1

αi [Xi (ω) − P(Xi )] < −ε. (4)

123



Conglomerability and disintegrability 505

If P is not incoherent, we say that P is coherent.

An equivalent, and sometimes more convenient, way to define coherent prevision is
to say that P is coherent if, for every finite subset {X1, . . . , Xn} of U and all scalars
α1, . . . , αn ,

sup
ω∈Ω

n∑

i=1

αi [Xi (ω) − P(Xi )] ≥ 0. (5)

It is not difficult to see that this is equivalent to Definition 2. As defined above, a coher-
ent prevision P must assume only finite values, otherwise (5) would be impossible
and/or undefined. There are ways to generalize the concept of coherent prevision to
allow infinite values. (See Berti et al. 2001; Crisma and Gigante 2001; Crisma et al.
1997; Schervish et al. 2014b for some of these generalizations). Such generalizations
play no role in the results of this paper. Our theorems apply only to sets of random
variables for which all previsions (and conditional previsions) are finite.

There are many coherent previsions on the set X of bounded random variables,
and each of them is a finitely additive probability when restricted to the collection of
indicator functions of subsets of Ω . That is, using the standard notation of letting the
name of an event stand for its indicator function, P(Ω) = 1, P(A∪B) = P(A)+P(B)

when A ∩ B = ∅, and P(A) ≥ 0 for all A ⊆ Ω . By finite additivity and linearity
of coherent prevision, if X = ∑n

i=1 αi Ai is a simple function (one that assumes
only finitely many distinct values) the prevision of X equals

∑n
i=1 αi P(Ai ). This

resembles the formula for the integral of a simple function in the usual measure
theoretic derivation. To carry the resemblance further, the value of P for every bounded
X is uniquely determined from the finitely additive probability by means of the fact
that

P(X) = sup
simple Y≤X

P(Y ) = inf
simple Y≥X

P(Y ). (6)

The first equation in (6) is the same way that the Lebesgue integral of a nonnegative
function X is defined in terms of the integrals of simple functions. Indeed P can be
expressed as a finitely additive integral. Generalizing from the definition of Daniell
integral in Royden (1968, [Chapter 13]), we can call a coherent prevision a finitely
additive Daniell integral. Definition 3 applies to both bounded and unbounded func-
tions. It also applies to functions defined on arbitrary spaces and to finitely additive
set functions that are not probabilities.

Definition 3 Let L be a linear space of functions defined on a common space Γ

such that L contains all constants. Let L be a linear functional defined on L that
satisfies L(X) ≥ 0 whenever X (ω) ≥ 0 for all ω. Then L is called a nonnegative
linear functional or a finitely additive Daniell integral over L. We can write L(X) =∫
Ω

X (ω)L(dω). If L is a nonnegative linear functional such that L(1) = 1, we call L
a finitely additive expectation.

The finitely additive Daniell integral is equivalent to the integral as developed
by Dunford and Schwartz (1958, [Chapter III]) for bounded random variables while
remaining equivalent to the notion of coherent prevision (finitely additive expectation)
for unbounded random variables. (See Proposition 1 below.) For unbounded random
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variables, not all real-valued coherent previsions admit an integral representation in
the sense of Dunford and Schwartz (1958). On the other hand, all real-valued coherent
previsions admit a representation as a finitely additive Daniell integral. For discussion
of the problem, see Berti et al. (2001), Berti and Rigo (2000), Berti and Rigo (2002),
Schervish et al. (2008), Seidenfeld et al. (2009).

Here is an example of a finitely additive expectation that is not countably additive.
This example will be used later to illustrate our main result.

Example 2 Let P be a countably additive probability on a measurable space (Ω,B)

such that Ω has infinitely many elements, and let X be the collection of all bounded
measurable random variables. It is not difficult to show that the only coherent prevision
for each bounded random variable is P(X) equal to its countably additive expected
value. Also, let Y be a random variable that is unbounded above and bounded below.
Suppose that Y has finite expected value y by the usual countably additive definition.
We will show that P(Y ) = p is coherent with the previsions of all of the bounded
random variables if and only if p ≥ y. For the “only if” direction, note that y =
supbounded X≤Y P(X), and coherence requires that P(X) ≤ P(Y ) for every bounded
X ≤ Y . It follows that y ≤ P(Y ) is necessary for coherence. For the “if” direction,
suppose that p ≥ y. We prove that P extends to a nonnegative linear functional L on
the span L of the bounded random variables and Y with L(1) = 1. Every element of
L has a unique representation as αY + X for some real α and some bounded random
variable X . Define L(αY + X) = αp + P(X), which satisfies L(1) = 1 and is clearly
linear and well-defined. To see that L is nonnegative, note that αY + X ≥ 0 only if
α ≥ 0, in which case, L(αY + X) ≥ αy + L(X), which equals the countably additive
integral of αY + X , which in turn is nonnegative.

To see that P is not countably additive when p > y, let {Xn}∞n=1 be a countable
sequence of bounded random variables that increase monotonically to Y , such as
Xn = min{Y, n}. Then Y − X1 = ∑∞

n=2(Xn − Xn−1), with each term Xn − Xn−1 ≥ 0.
Countable additivity would require that

P(Y − X1) =
∞∑

n=2

P(Xn − Xn−1).

But the left-hand side is p − P(X1) while the right-hand side is y − P(X1), which
are not equal.

Although the space L in Definition 3 may contain unbounded functions, L must
assume only finite values since it is a linear functional. (de Finetti, 1974, Section 3.9)
proves the following result which makes clear the connection between finitely additive
expectation and coherent prevision.

Proposition 1 P is a finite coherent prevision on a set U of random variables if and
only if there exists a finitely additive expectation L on a linear space L that contains
U and all constants such that L(X) = P(X) for every X ∈ U .

Coherent conditional prevision can be defined in a manner similar to coherent
prevision.
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Definition 4 Let Q be a collection of pairs (X, h) where X is a random variable
and h is a nonempty subset of Ω . A function P(·|·) : Q → R is called a conditional
prevision. We say that P is coherent if, for every finite subset {(X1, h1), . . . , (Xn, hn)}
of Q and scalars α1, . . . , αn ω ∈ Ω ,

sup
ω∈Ω

n∑

i=1

αi hi [Xi (ω) − P(Xi |hi )] ≥ 0.

If P is not coherent, we say that P is incoherent.

By comparing Definitions 2 and 4, it is easy to see that P(X) must be the same
as P(X |Ω) for every random variable X . This makes coherent prevision the special
case of coherent conditional prevision in which, for every pair (X, h) ∈ Q, we have
h = Ω . Hence, whenever we refer to a prevision P(X) we mean that (X,Ω) ∈ Q
and P(X) = P(X |Ω).

When P(h) = 0 coherence (as defined in Definition 4) is insufficient to ensure
that P(X |h) has even the most basic intuitive properties. For example, if P(h) =
0 then P(h|h) �= 1 is coherent. To insure that conditional probabilities behave as
much like probabilities as possible, De Finetti introduces an additional assumption in
(1974, [Appendix 16]) as do Regazzini (1987), and Crisma and Gigante (2001). For
example, Crisma and Gigante (2001), de Finetti (1974), Regazzini (1987) choose a
stronger definition of coherent conditional prevision, which we call DRCG-coherence
in Definition 5:

Definition 5 Let Q be a collection of pairs (X, h) where X is a random variable
and h is a nonempty subset of Ω . A conditional prevision P defined on Q is called
DRCG-coherent if, for every finite subset {(X1, h1), . . . , (Xn, hn)} of Q and scalars
α1, . . . , αn ω ∈ Ω ,

sup
ω∈h0

n∑

i=1

αi hi [Xi (ω) − P(Xi |hi )] ≥ 0, (7)

where h0 = ⋃n
i=1 hi .

On the other hand, Dubins (1975) makes a weaker assumption that we generalize here
for use with unbounded random variables.

Definition 6 Let π be a partition of Ω , and let P be a finite coherent conditional
prevision defined on a set Q. We say that P contains a π -strategy if, for each h ∈ π :

1. Lh = {X : (X, h) ∈ Q} is a nonempty linear space that contains h and all
constants,

2. P(·|h) is a finitely additive expectation on Lh , and
3. P(X |h) = c for each random variable X that equals the constant c on the whole

set h.
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Instead of the third condition in Definition 6, Dubins (1975) assumes P(h|h) = 1,
which is equivalent to the third condition when all random variables are bounded.
Theorem 1, our main result, assumes that P contains a π -strategy.

It is straightforward to show that, for every partition π , every finite DRCG-coherent
prevision either contains a π -strategy or can be extended so as to contain a π -strategy.
Rather than strengthen the definition of coherence, we prefer to add assumptions to
theorems as needed. In Schervish (2014b, [Example 2]) we illustrate our reason for
this preference.

3 Conglomerability and disintegrability

We turn now to precise definitions of conglomerability and disintegrability. Let π be
a partition of Ω . That is, π is a collection {h : h ∈ π} of mutually disjoint subsets of
Ω such that their union is Ω . The conditional prevision of each random variable X
given each element h of π is denoted P(X |h). In order to make sense out of the loose
phrase “the integral of conditional expectations,” we need to be precise about what it
means to integrate a conditional prevision. In this section, all integrals are intended in
the sense of Definition 3.

3.1 The Integral of a conditional expectation

Nonnegative linear functionals behave in many ways like the countably additive
Lebesgue integral. One property that they share is the following transformation prop-
erty that we use.

Lemma 1 Let L be a linear space of real-valued functions on Ω that includes all
constants, let 	 be a set, and let 
 : Ω → 	 be a function. Let L be a nonnegative
linear functional defined on L. Let V be a linear space of real-valued functions on
	 that includes all constants and such that, Z(
) ∈ L for every Z ∈ V . Define
L
(Z) = L(X), where X = Z(
). Then L
 is a nonnegative linear functional on V .

Proof If Z1, Z2 ∈ V and α, β ∈ R, then

L
(αZ1 + βZ2) = L[αZ1(
) + βZ2(
)] = αL[Z1(
)] + βL[Z2(
)]
= αL
(Z1) + βL
(Z2).

If Z(θ) ≥ 0 for all θ ∈ 	, then X (ω) = Z(
(ω)) ≥ 0 for all ω ∈ Ω . Hence
L
(Z) = L(X) ≥ 0. 
�
Definition 7 We call L
 in Lemma 1 the integral induced from L by 
.

Our primary use of Lemma 1 is to give meaning to the concept of integrating over
a partition. In particular, we will give a precise meaning to “integral of conditional
expectations.” To that end, let π be a partition and let X be a random variable such
that P(X |h) is defined and finite for all h ∈ π . Define
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Xπ (h) = P(X |h), for all h ∈ π , (8)


(ω) = that unique h ∈ π such that ω ∈ h, (9)

P(X |π)(ω) = Xπ (
(ω)) (10)

= P(X |h), for that unique h ∈ π such that ω ∈ h,

so that Xπ is a real-valued function on π , P(X |π) is a real-valued function on Ω ,
and P(X |π) = Xπ (
). Let L be a linear space of random variables that contains all
constants, the domain of P , and P(X |π). Assuming that it is possible to extend P to
L in such a way that all previsions are finite, then we can apply Lemma 1 with 	 = π ,
V equal to the linear span of the constants and the random variable Xπ , L equal to the
extension of P , and 
 as defined in (9). Let Pπ denote the integral induced from P
by 
, denoted L
 in Lemma 1. With the notation just introduced, Lemma 1 implies
that

Pπ (Xπ ) =
∫

π

P(X |h)Pπ (dh) =
∫

Ω

P[X |
(ω)]P(dω) = P[P(X |π)], (11)

if any of the four terms in (11) is finite. In summary, we have the following:

Definition 8 Let π be a partition of Ω , and let X be a random variable such that
P(X |h) is defined and finite for all h ∈ π and P[P(X |π)] is defined and finite. Then
(11) is called the integral of the conditional expectations given π .

3.2 Precise definitions

Definition 9 Let W be a collection of random variables. Let π be a partition, and let
P be a finite coherent conditional prevision on a set Q that contains both W × π and
W ×{Ω}. We say that P is conglomerable in π with respect to W if, for each X ∈ W ,

inf
h∈π

P(X |h) ≤ P(X) ≤ sup
h∈π

P(X |h). (12)

We say that P is disintegrable in π with respect to W if, for each X ∈ W ,

P(X) =
∫

π

P(X |h)Pπ (dh). (13)

In view of (11), there is an alternative way to express that P is disintegrable in a
partition.

Proposition 2 P is disintegrable in π with respect to W if and only if, for each
X ∈ W , P(X) = P[P(X |π)] = Pπ (Xπ ).

When the conclusion of Proposition 2 holds, Schervish et al. (2014a) says that P
satisfies the Law of Total Previsions in π .

Readers of Dubins (1975) will note that the definition of conglomerable in Defin-
ition 9 looks different from the corresponding definition that Dubins gave in Dubins
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(1975). Specifically, the definition in Dubins (1975) is that P is conglomerable in π

with respect to the collection W if

for all X ∈ W, P(X |h) ≥ 0 for all h ∈ π implies P(X) ≥ 0. (14)

Definition 9 is a straightforward generalization of the definition that de Finetti (de
Finetti 1974, p. 143) gives for indicators of events. Definition 9 and (14) are equivalent
when W = X , the collection of all bounded random variables. The proof relies on
the fact that X is a linear space and contains all constants. The two definitions are not
necessarily equivalent for every collection that is not a linear space and/or does not
contain all constants.

Example 3 Consider the same situation as Example 1. Let W be the collection of all
nonnegative bounded random variables. Hence, W is not a linear space. Because each
X ∈ W is nonnegative, it follows that P(X |Ai ) ≥ 0 for all i and P(X) ≥ 0. Hence,
(14) holds. On the other hand, let X (( j, i)) = j for all j = 0, 1 and i = 1, 2, . . .. Then
P(X |Ai ) = 1 for all i while P(X) = 1/2 and P is not conglomerable by Definition 9.

In order to maintain the spirit of Dubins’ definition when W is not a linear space
or does not contain all constants, we need to strengthen (14).

Definition 10 Let W be a collection of random variables. Let π be a partition, and let
P be a finite coherent conditional prevision on a set Q that contains both W × π and
W ×{Ω}. We say that P is D-conglomerable in π with respect to W if the following
is true. For all X ∈ W and all real c,

• P(X |h) ≤ c for all h ∈ π implies P(X) ≤ c, and
• P(X |h) ≥ c for all h ∈ π implies P(X) ≥ c.

We now show that Definition 10 is equivalent to conglomerability from Definition 9
for finite previsions.

Lemma 2 Let W be a collection of random variables and let π be a partition. Let
P be a finite coherent conditional prevision on a set Q that contains both W × {Ω}
and W × π . Then P is conglomerable in π with respect to W if and only if P is
D-conglomerable in π with respect to W .

Proof For the “if” direction, suppose that P is D-conglomerable in π with respect to
W . Let X ∈ W , and let c1 = infh∈π P(X |h) and c2 = suph∈π P(X |h). Finiteness of
P implies that c1 < ∞ and c2 > −∞. If c1 = −∞, the second bullet in Definition 10
is vacuous. If c1 is finite, then P(X |h) ≥ c1 for all h ∈ π and Definition 10 says that
P(X) ≥ c1. Similarly if c2 = ∞, the first bullet in Definition 10 is vacuous. If c2 is
finite, then P(X |h) ≤ c2 for all h ∈ π so that P(X) ≤ c2. Hence (12) holds.

For the “only if” direction, suppose that P is conglomerable in π with respect to
W . Let X ∈ W . Then (12) holds. Let c be a real number. If P(X |h) ≥ c for all h ∈ π ,
then c ≤ infh∈π P(X |h) ≤ P(X) by (12). Similarly, if P(X |h) ≤ c for all h ∈ π ,
then c ≥ suph∈π P(X |h) ≥ P(X). 
�
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4 Extending the equivalence of conglomerability and disintegrability
to unbounded variables

Lemma 3 shows that disintegrability implies conglomerability for arbitrary collections.

Lemma 3 Let W be a collection of random variables. Let π be a partition, and let
P be a finite coherent conditional prevision on a set Q that contains both W × π

and W × {Ω}. Suppose that P is disintegrable in π with respect to W . Then P is
conglomerable in π with respect to W .

Proof Let X ∈ W , and define Xπ by (8). Because Pπ is coherent,

inf
h∈π

Xπ (h) ≤ Pπ (Xπ ) ≤ sup
h∈π

Xπ (h). (15)

By disintegrability, P(X) = Pπ (Xπ ), hence (15) implies (12). Since the above argu-
ment applies to all X ∈ W , P is conglomerable in π with respect to W . 
�

In light of Lemma 3, every set W of random variables, falls into one of three classes
relative to P and a partition π .

Definition 11 Let W be a collection of random variables. Let π be a partition, and
let P be a finite coherent conditional prevision on a set Q that contains both W × π

and W × {Ω}. We say that

– W is of Class 0 relative to P and π if P is neither conglomerable nor disintegrable
in π with respect to W .

– W is of Class 1 relative to P and π if P is conglomerable in π with respect to W
but P is not disintegrable in π with respect to W .

– W is of Class 2 relative to P and π if P is both conglomerable and disintegrable
in π with respect to W .

Theorem 1 of Dubins (1975) can be reexpressed as saying that, for each partition
π and each coherent conditional prevision P , the collection X of bounded random
variables is either of Class 0 or of Class 2 but never of Class 1 relative to P and π .
In Example 5, we give an example of a coherent prevision P , a partition π , and a
collection Y of random variables such that X ⊂ Y and Y is of Class 1 relative to P
and π . The following result is a straightforward consequence of the class definitions.

Proposition 3 Let W be a collection of random variables. Let π be a partition, and
let P be a finite coherent conditional prevision on a set Q that contains both W × π

and W × {Ω}. If W is of Class 0 relative to P and π , then every superset of W is
also of Class 0. If W is of Class 2 relative to P and π , then every subset of W is also
of Class 2.

Our extension of Dubins’ theorem gives a sufficient condition for a collection W
of random variables to be not of Class 1. Berti and Rigo (1992, [Theorem 3.1]) prove
a similar theorem for bounded random variables.
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Theorem 1 Let W be a collection of random variables. Let π be a partition, and let
P be a finite conditional prevision on a set Q. Assume that P contains a π -strategy
and that Q contains both W × π and W × {Ω}. Assume that (P(X |π),Ω) ∈ Q, and
that

for every X ∈ W , X − P(X |π) ∈ W . (16)

Then, with respect to the collection W , P is conglomerable in π if and only if P is
disintegrable in π .

Proof Because P(X |π)(ω) = P(X |h) for all ω ∈ h, P[P(X |π)|h] = P(X |h) for all
h ∈ π and all X ∈ W . By linearity of P(·|h), we get P[X − P(X |π)|h] = 0, hence

inf
h∈π

P[X − P(X |π)|h] = 0 = sup
h∈π

P[X − P(X |π)|h].

We have assumed that X − P(X |π) ∈ W . If P is conglomerable in π with respect
to W , then P[X − P(X |π)] = 0, from which it follows that P(X) = P[P(X |π)],
so that P is disintegrable in π with respect to W . If P is disintegrable in π then P is
conglomerable in π by Lemma 3. 
�

The key assumption in Theorem 1 is (16). For an arbitrary collection W , define

W− = {X − P(X |π) : X ∈ W},
W+ = W ∪ W−.

The following results (the second of which is trivial) help to distinguish some collec-
tions of random variables by their classes.

Lemma 4 Let W be a collection of random variables. Let π be a partition, and let P
be a finite conditional prevision on a set Q. Assume that P contains a π -strategy and
that Q contains both W × π and W × {Ω}. Then

1. W+ satisfies (16),
2. W is of Class 2 relative to P and π if and only if W+ is also of Class 2, and
3. If W is not of Class 2 relative to P and π , then W+ is of Class 0.

Proof For part 1, let X ∈ W so that X − P(X |π) ∈ W+. Also Xπ = [P(X |π)]π ,
hence [X − P(X |π)]π is identically 0, and

X − P(X |π) − [X − P(X |π)]π (
) ∈ W+.

For part 2, the “if” direction is immediate from Proposition 3. For the “only if”
direction, note that for every Y ∈ W−, Yπ is identically 0 and P(Y ) = 0 if W is of
Class 2. For part 3, Theorem 1 says that W+ is either of Class 0 or Class 2. If W is
not of Class 2, then no superset of it, such as W+, can be of Class 2. Hence W+ must
be of Class 0. 
�
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Proposition 4 Let W be a collection of random variables. Let π be a partition, and
let P be a countably additive prevision on a set Q that contains both W × π and
W × {Ω}. If every element of π has positive probability, then W is of Class 2 relative
to P and π .

One subtle point concerning Proposition 4 is that P can be a countably additive
prevision on the collection of all bounded random variables but fail to be countably
additive on a collection that includes unbounded random variables. Examples 2, 4,
and 5 illustrate this circumstance. As such, these examples illustrate how a probability
can be both conglomerable and disintegrable in every partition relative to the class
of bounded random variables, but not so with respect to larger classes that include
unbounded random variables.

5 Examples

In this section, we extend Example 2 to illustrate both situations in which the conditions
of Theorem 1 are satisfied and situations in which the conditions are not satisfied.
Example 4 contains examples of Theorem 1 in which a collection W of random
variables is of Class 0 relative to P and π1 for a partition π1, while W is of Class 2
relative to P and π2 for a different partition π2. Example 5 contains three different
collections of random variables (one of which is the W from Example 4) that are
of Classes 0, 1, and 2 relative to the same partition. In particular, the conditions of
Theorem 1 fail for the collection that is of Class 1.

Example 4 We will make use of the construction described in Example 2. Let Ω be
the set of ordered pairs of integers from 1 on up. Define P({(x, y)}) = 2−x−y for all
x, y ≥ 1. Then P is countably additive as a probability on Ω . Let Y be the unbounded
random variable Y (x, y) = y for all x, y, whose countably additive expected value
is 2. We saw in Example 2 that a necessary and sufficient condition for P(Y ) = p to
be coherent with the previsions for the bounded random variables is p ≥ 2. In this
example, we choose P(Y ) = 4, and extend P to the linear span of Y and bounded
random variables as in Example 2. Consider the following two partitions:

π1 = {hx : x ≥ 1},
π2 = {gy : y ≥ 1},

where hx = {(x, y) : y ≥ 1} for each x ≥ 1, and gy = {(x, y) : x ≥ 1} for each
y ≥ 1. It is straightforward to show that P(hx ) = 2−x for all x ≥ 1, and P(gy) = 2−y

for all y ≥ 1. Hence, for all x and y, P(gy |hx ) = 2−y and P(hx |gy) = 2−x . For each
bounded random variable X , P(X) must equal its countably additive expected value.

In order to satisfy the conditions of Theorem 1, we will assign finite coherent
previsions and finite coherent conditional previsions given hx , gy for all x and y
and given π1 and π2 to all random variables in the linear span W of the set Y =
X ⋃{Y, P(Y |π1), P(Y |π2)}, where X is the set of all bounded random variables.
Because each nonempty subset of Ω has positive probability, P will contain both a
π1-strategy and a π2-strategy so long as P is coherent.
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First, note that P(Y |π2) = Y . Second,

P(Y |π1)(x, y) = P(Y |hx ) = P(Y hx )2
x ,

so that P(Y |π1) will be defined as soon as we choose coherent values for P(Y hx )

for all x ≥ 1. Note that P(Y hx )2x might be a bounded or an unbounded sequence
depending on what values we choose for P(Y hx ). We don’t need Y hx ∈ W for each
x , but we do need P(Y |π1) ∈ W . So we need to choose coherent values for P(Y hx )

for all x .
An argument similar to the one given in Example 2 shows that, for each x , P(Y hx )

must be assigned a value greater than or equal to 2−x+1. Let rx = P(Y hx ) − 2−x+1

for all x , so that for all x ,

P(Y hx ) = rx + 2−x+1, (17)

P(Y |π1)(x, y) = 2 + rx 2x .

Since Y = ∑∞
x=1 Y hx , and Y hx ≥ 0 for all x , it follows that the following are

necessary conditions for (17) to be coherent assignments:

rx ≥ 0, and
∞∑

x=1

rx ≤ 2. (18)

Because 2 + rx 2x ≥ 0 for all x , we have

P[P(Y |π1)] ≥
∞∑

x=1

∞∑

y=1

(2 + rx 2x )(2−x−y) = 2 +
∞∑

x=1

rx , (19)

with equality in (19) required if rx 2x is bounded. To verify that rx 2x can be either
bounded or unbounded while satisfying all of the other conditions above, consider the
following two examples: for all x , either rx = 2−x or rx = 0.6x .

We show next that (18) and (19) are also sufficient for coherence. Assume that (18)
and (19) hold. Let

u = 2 +
∞∑

x=1

rx , and,

v = P[P(Y |π1)] − u.

Note that v ≥ 0 with v = 0 if rx 2x is bounded. The most general gamble allowed by
(17) and the previsions from Example 2 is
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Z = β(Y − 4) +
∞∑

x=1

∞∑

y=1

αx,y[I{(x,y)} − 2−x−y] + δ[P(Y |π1) − u − v]

+
n∑

i=1

γi

⎛

⎝

⎡

⎣
∞∑

y=1

y I{xi ,y}

⎤

⎦ − rxi − 2−xi +1

⎞

⎠ , (20)

where xi , . . . , xn ≥ 1 are distinct integers, and {αx,y : x, y ≥ 1} is a bounded
collection of numbers. When ω = (x, y), the value of (20) is

Z(x, y) = β(y − 4) + αx,y − q + δ[2 + rx 2x − u − v] (21)

+
n∑

i=1

γi [y I{xi }(x) − 2−xi +1] − t,

where t = ∑n
i=1 γi rxi , and q = ∑∞

x=1
∑∞

y=1 2−x−yαx,y , both finite numbers.
If, for every choice of n, β, δ, γ1, . . . , γn , and {αx,y : x, y ≥ 1}, there exists a pair

(x, y) such that (21) is nonnegative, then the previsions are coherent. If β > 0, then
(21) is unbounded above along sequences with fixed x and unbounded y. Similarly,
if rx 2x is unbounded, then δ > 0 makes (21) unbounded above along sequences with
fixed y and unbounded x . Hence, for the rest of the proof we will assume that β ≤ 0
and either rx 2x is bounded (in which case v = 0) or rx 2x is unbounded and δ ≤ 0.
The weighted average of (21) with weights 2−x−y is

∞∑

x=1

∞∑

y=1

2−x−y Z(x, y) = −2β − t − vδ. (22)

Since either δ ≤ 0 or v = 0 implies that −vδ ≥ 0, the right-hand side of (22) is at least
−2β−t . If t ≤ −2β, then at least one value of Z(x, y) must be nonnegative, because a
weighted average of the Z(x, y) values is nonnegative. For the remainder of the proof,
assume that t > −2β. Since all rxi ≥ 0,

∑n
i=1 rxi ≤ 2, and t = ∑n

i=1 γi rxi , there
must be at least one γi that is greater than −β. Let x0 be an xi such that γ0 ≡ γi > −β.
When ω = (x0, y), (21) equals

Z(x0, y) = αx0,y − q + (γ0 + β)y −
n∑

i=1

γi 2
−xi +1 − tδ[2 + rx0 2x0 − u − v].

(23)

Now, (γ0 + β)y is unbounded above as y → ∞ because γ0 + β > 0, and everything
else in (23) is bounded. Hence (21) takes nonnegative values and the previsions that
satisfy (18) and (19) are coherent. In summary, P(Y hx ), P(Y |π1), and P[P(Y |π1)]
are coherent if and only if there is a nonnegative sequence {rx }∞x=1 such that
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∞∑

x=1

rx ≤ 2,

P(Y |π1)(x, y) = 2 + rx 2x ,

P[P(Y |π1)] ≥ 2 +
∞∑

x=1

rx .

We will choose examples of rx that satisfy the above conditions while keeping r x 2x

bounded. This makes P(Y |π1) bounded and W the linear span of Y = X ⋃{Y }.
For i = 1, 2, it follows from Theorem 1 that P is conglomerable in πi if and only

if P is disintegrable in πi . To see whether P is disintegrable in πi , we need to check
whether (13) holds for every random variable in W . Because P is countably additive
on the indicator functions, (13) holds for each bounded X in every partition. If (13)
holds for X1 and X2, it holds for α1 X1 + α2 X2 for all real α1, α2 because P(·|h) is
linear. So, P is disintegrable in a partition if and only if (13) holds for Y .

Since Y = P(Y |π2), Y satisfies (13) in π2 so that P is disintegrable in π2 with
respect to W and W is of Class 2 relative to π2. In order for Y to satisfy (13) in π1,
we need

4 = P(Y ) = P[P(Y |π1)] = u,

i.e.,
∑∞

x=1 rx = 2. For example, if rx = 3.5 × 3−x , then u = 3.75 and P is not
disintegrable in π1. If rx = 4 × 3−x , then P is disintegrable in both partitions.

We conclude this section with an example that involves three collections of random
variables X ⊂ Y ⊂ W such that X and W satisfy the conditions of Theorem 1 while
Y does not. Also, X is of Class 2, Y is of Class 1, and W is of Class 0.

Example 5 Let X , Y , π1, Y , and W be as in Example 4. Define rx = P(Y hx )−2−x+1

as in Example 4 so that P(Y |hx ) = 2 + rx 2x . We saw in Example 4 that rx ≥ 0 and∑∞
x=1 rx ≤ 2 were necessary and sufficient for the stated previsions to be coherent.

Let rx = 3.5 × 3−x as in one of the cases at the end of Example 4. Then P(Y |π1)

is bounded, W satisfies the conditions of Theorem 1, and P[P(Y |π1)] = 3.75. Here,
W is of Class 0 relative to P and π1. Because P is countably additive on X , we know
that X is of Class 2 relative to P and π1. Because we have not included Y − P(Y |π1)

in Y , we see that Y does not satisfy (16). To see that Y is of Class 1, note that
P[P(Y |π1)] = 3.75 �= 4 = P(Y ) while

inf
h∈π

P(Y |h) = 2 ≤ 4 = P(Y ) ≤ sup
h∈π

P(Y |h) = 13

3
.

Hence, Y is of Class 1 relative to P and π1.
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6 Discussion

Conglomerability and disintegrability are familiar concepts in the countably additive
theory of probability, although the names may not be as familiar as the concepts. The
law of total probability or “tower property” of conditional expectations is essentially
disintegrability, namely that the mean of a conditional mean is the marginal mean.
With disintegrability taken for granted, conglomerability is simply an instance of the
property of countably additive expectations that the mean of a random variable lies in
the closed convex hull of its range. Of course, the countably additive theory guarantees
disintegrability by allowing the conditional probabilities of events to change with the
partition on which one conditions. The well-known Borel paradox is a classic example
of how this happens. In the countably additive theory Kadane et al. (1996) illustrates
how pervasive the Borel paradox is. If one insists on P(X |h) having a meaning for
every random variable X and every nonempty event h, then not even the countably
additive theory can guarantee disintegrability in every partition.

The finitely additive theory of probability avoids the Borel paradox, but at the price
of having its conditional probabilities fail conglomerability. Dubins (1975) shows
that for coherent previsions over the linear space of all bounded random variables,
conglomerability in a partition is equivalent to disintegrability in that same partition.
In this paper we extend the concept of a coherent prevision to a collection of unbounded
random variables with finite previsions and finite conditional previsions. We show that
a finitely additive version of the Daniell integral gives an extension of disintegration
to this collection of unbounded variables. When coherent previsions are defined for a
linear space of such random variables and they contain a π -strategy, conglomerability
and disintegrability of previsions in π are equivalent conditions.

As a final note, it is important to keep in mind that the concepts of conglomerability
and disintegrability are defined with respect to a collection of random variables. The
larger the collection of random variables, the more conditions of the form (12) and
(13) that each concept requires. That is, in order for P to be conglomerable in π with
respect to a collection W , (12) must hold for every X ∈ W . Similarly, for P to be
disintegrable in π with respect to W , (13) must hold for every X ∈ W . Consider the
collection X of all bounded random variables and a larger collection W that satisfies
the conditions of Theorem 1 (such as the W in Example 5). Let Y be an intermediate
collection (such as the Y in Example 5) so that X ⊂ Y ⊂ W . If P is conglomerable
in π with respect to W , then W is of Class 2 relative to P and π and so are Y and X .
Similarly, if P is disintegrable in W with respect to π , then all three collections are of
Class 2. However, the equivalence of conglomerability and disintegrability does not
carry over from larger collections to smaller collections. The reason is that W might
be of Class 0 while Y is of Class 1 and X is of Class 2. Indeed, this is precisely what
occurs in Example 5.
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